MetaTOC stay on top of your field, easily

Calcium‐activated BKCa channels govern dynamic membrane depolarizations of horizontal cells in rodent retina

, , ,

The Journal of Physiology

Published online on

Abstract

Key points Large conductance, Ca2+‐activated K+ (BKCa) channels play important roles in mammalian retinal neurons, including photoreceptors, bipolar cells, amacrine cells and ganglion cells, but they have not been identified in horizontal cells. BKCa channel blockers paxilline and iberiotoxin, as well as Ca2+ free solutions and divalent cation Cav channel blockers, eliminate the outwardly rectifying current, while NS1619 enhances it. In symmetrical 150 mm K+, single channels had a conductance close to 250 pS, within the range of all known BKCa channels. In current clamped horizontal cells, BKCa channels subdue depolarizing membrane potential excursions, reduce the average resting potential and decrease oscillations. The results show that BKCa channel activation puts a ceiling on horizontal cell depolarization and regulates the temporal responsivity of the cells. Abstract Large conductance, calcium‐activated potassium (BKCa) channels have numerous roles in neurons including the regulation of membrane excitability, intracellular [Ca2+] regulation, and neurotransmitter release. In the retina, they have been identified in photoreceptors, bipolar cells, amacrine cells and ganglion cells, but have not been conclusively identified in mammalian horizontal cells. We found that outward current recorded between −30 and +60 mV is carried primarily in BKCa channels in isolated horizontal cells of rats and mice. Whole‐cell outward currents were maximal at +50 mV and declined at membrane potentials positive to this value. This current was eliminated by the selective BKCa channel blocker paxilline (100 nm), iberiotoxin (10 μm), Ca2+ free solutions and divalent cation Cav channel blockers. It was activated by the BKCa channel activator NS1619 (30 μm). Single channel recordings revealed the conductance of the channels to be 244 ± 11 pS (n = 17; symmetrical 150 mm K+) with open probability being both voltage‐ and Ca2+‐dependent. The channels showed fast activation kinetics in response to Ca2+ influx and inactivation gating that could be modified by intracellular protease treatment, which suggests β subunit involvement. Under current clamp, block of BKCa current increased depolarizing membrane potential excursions, raising the average resting potential and producing oscillations. BKCa current activation with NS1619 inhibited oscillations and hyperpolarized the resting potential. These effects underscore the functional role of BKCa current in limiting depolarization of the horizontal cell membrane potential and suggest actions of these channels in regulating the temporal responsivity of the cells.