MetaTOC stay on top of your field, easily

The ecology of population dispersal: Modeling alternative basin‐plateau foraging strategies to explain the Numic expansion

, , , ,

American Journal of Human Biology

Published online on

Abstract

Objectives The expansion of Numic speaking populations into the Great Basin required individuals to adapt to a relatively unproductive landscape. Researchers have proposed numerous social and subsistence strategies to explain how and why these settlers were able to replace any established populations, including private property and intensive plant processing. Here we evaluate these hypotheses and propose a new strategy involving the use of landscape fire to increase resource encounter rates. Methods Implementing a novel, spatially explicit, multi‐scalar prey choice model, we examine how individual decisions approximating each alternative strategy (private property, anthropogenic fire, and intensive plant processing) would aggregate at the patch and band level to confer an overall benefit to this colonizing population. Analysis relies on experimental data reporting resource profitability and abundance, ecological data on the historic distribution of vegetation patches, and ethnohistoric data on the distribution of Numic bands. Results Model results show that while resource privatization and landscape fires produce a substantial advantage, intensified plant processing garners the greatest benefit. The relative benefits of alternative strategies vary significantly across ecological patches resulting in variation across ethnographic band ranges. Combined, a Numic strategy including all three alternatives would substantially increase subsistence yields. Conclusions The application of a strategy set that includes landscape fire, privatization and intensified processing of seeds and nuts, explains why the Numa were able to outcompete local populations. This approach provides a framework to help explain how individual decisions can result in such population replacement events throughout human history.