The Determinants of Regional Freight Transport: A Spatial, Semiparametric Approach
Published online on April 07, 2017
Abstract
In the context of modeling regional freight the four‐stage model is a popular choice. The first stage of the model, freight generation and attraction, however, suffers from three shortcomings: first of all, it does not take spatial dependencies among regions into account, thus potentially yielding biased estimates. Second, there is no clear consensus in the literature as to the choice of explanatory variables. Second, sectoral employment and gross value added are used to explain freight generation, whereas some recent publications emphasize the importance of variables which measure the amount of logistical activity in a region. Third, there is a lack of consensus regarding the functional form of the explanatory variables. Multiple recent studies emphasize nonlinear influences of selected variables. This article addresses these shortcomings by using a spatial variant of the classic freight generation and attraction models combined with a penalized spline framework to model the explanatory variables in a semiparametric fashion. Moreover, a Bayesian estimation approach is used, coupled with a penalized Normal inverse‐Gamma prior structure, to introduce uncertainty regarding the choice and functional form of explanatory variables. The performance of the model is assessed on a real‐world example of freight generation and attraction of 258 European NUTS‐2 level regions, covering 25 European countries.