MetaTOC stay on top of your field, easily

Effective mosquito and arbovirus surveillance using metabarcoding

, , , , , ,

The International Journal of Health Planning and Management

Published online on

Abstract

Effective vector and arbovirus surveillance requires timely and accurate screening techniques that can be easily upscaled. Next‐generation sequencing (NGS) is a high‐throughput technology that has the potential to modernise vector surveillance. When combined with DNA barcoding, it is termed ‘metabarcoding’. The aim of our study was to establish a metabarcoding protocol to characterise pools of mosquitoes and screen them for virus. Pools contained 100 morphologically identified individuals, including one Ross River virus (RRV) infected mosquito, with three species present at different proportions: 1, 5, 94%. Nucleic acid extracted from both crude homogenate and supernatant was used to amplify a 269 bp section of the mitochondrial cytochrome c oxidase subunit I (COI) locus. Additionally, a 67 bp region of the RRV E2 gene was amplified from synthesised cDNA to screen for RRV. Amplicon sequencing was performed using an Illumina MiSeq, and bioinformatic analysis was performed using a DNA barcode database of Victorian mosquitoes. Metabarcoding successfully detected all mosquito species and RRV in every positive sample tested. The limits of species detection were also examined by screening a pool of 1000 individuals, successfully identifying the species and RRV from a single mosquito. The primers used for amplification, number of PCR cycles, and total number of individuals present all have effects on the quantification of species in mixed bulk samples. Based on the results, a number of recommendations for future metabarcoding studies are presented. Overall, metabarcoding shows great promise for providing a new alternative approach to screening large insect surveillance trap catches. This article is protected by copyright. All rights reserved.