MetaTOC stay on top of your field, easily

Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory

, , ,

The Journal of Physiology

Published online on


The hippocampus is critical for memory acquisition and consolidation. This function requires activity‐ and experience‐induced neuronal plasticity. It is known that neuronal plasticity is largely dependent on synchronized activity. As has been well characterized, repetitive correlated activity of presynaptic and postsynaptic neurons can lead to long‐term modifications at their synapses. Studies on network activity have also suggested that memory processing in the hippocampus may involve learning‐induced changes of neuronal synchronization, as observed in vivo between hippocampal CA3 and CA1 networks as well as between the rhinal cortex and the hippocampus. However, further investigation of learning‐induced synchronized activity in the hippocampus is needed for a full understanding of hippocampal memory processing. In this study, by performing paired whole‐cell recording in vivo on CA1 pyramidal cells (PCs) in anaesthetized adult rats, we examined CA1 neuronal synchronization before and after associative fear learning. We first found in naive animals that there was a low level of membrane‐potential (MP) synchronization and spike synchronization of CA1 PCs. In conditioned animals, we found a significant enhancement of both MP synchronization and spike synchronization, as observed on day 1 after learning, and this enhancement was transient and not observed on day 5. Accompanying learning‐induced synchronized activity was a decreased firing threshold and rise time of suprathreshold MP changes as well as an increased spontaneous firing rate, possibly contributing to the enhanced spike synchronization. The transiently enhanced CA1 neuronal synchronization may have important roles in generating neuronal plasticity for hippocampal storage and consolidation of associative memory traces. This article is protected by copyright. All rights reserved