Extra-Ovarian Gonadotropin Negative Feedback Revealed by Aromatase Inhibition in Female Marmoset Monkeys
AJP Endocrinology and Metabolism
Published online on August 01, 2017
Abstract
While the ovary produces the majority of estradiol (E2) in mature female primates, extra-ovarian sources contribute to E2 synthesis and action, including brain E2 regulating hypothalamic gonadotropin-releasing hormone (GnRH). In ovary-intact female rodent models, aromatase inhibition (AI) induces a PCOS-like hypergonadotropic hyperandrogenism due to absent E2-mediated negative feedback. In order to examine the role of extra-ovarian E2 on nonhuman primate gonadotropin regulation, the present study employs letrozole to elicit AI in adult female marmoset monkeys. Sixteen female marmosets (Callithrix jacchus) (>2yrs) were randomly assigned to ovary intact or ovariectomy (OVX) conditions and subsequently placed on a daily oral regimen of either ~200µl vehicle alone (ovary intact Control, n=3, OVX, n=3) or 1 mg/kg/day Letrozole in vehicle (ovary intact AI, n=4; OVX+AI, n=6). Blood samples were collected every 10 days and plasma chorionic gonadotropin (CG) and steroid hormone levels were determined by validated RIA and LC-MS/MS, respectively. Ovary intact AI-treated and OVX females exhibited elevated CG (p<0.01, p=0.004, respectively) compared with controls, and after 30 days, OVX+AI females exhibited a suprahypergonadotropic phenotype (p=0.004) compared to ovary intact+AI and OVX females. Androstenedione, A4 (p=0.03) and testosterone, T (p=0.05) were also elevated in ovary intact AI-treated females above all other groups. The current study thus confirms in a nonhuman primate that E2 depletion and diminished negative feedback in ovary-intact females engages hypergonadotropic hyperandrogenism. Additionally, we demonstrate that extra-ovarian estrogens, possibly neuroestrogens, contribute to female negative feedback regulation of gonadotropin release.