MetaTOC stay on top of your field, easily

Arterial Stiffness Induces Remodeling Phenotypes in Pulmonary Artery Smooth Muscle Cells via YAP/TAZ-Mediated Repression of Cyclooxygenase-2

, , , , , ,

AJP Lung Cellular and Molecular Physiology

Published online on

Abstract

Pulmonary arterial stiffness is an independent risk factor for mortality in pulmonary hypertension (PH), and plays a critical role in PH pathophysiology. We have recently demonstrated arterial stiffening early in experimental PH, along with evidence for a mechanobiologic feedback loop by which arterial stiffening promotes further cellular remodeling behaviors. Cyclooxygenase-2 (COX-2) and prostaglandin signaling have been implicated in stiffness-mediated regulation, with prostaglandin activity inversely correlated to matrix stiffness and remodeling behaviors in vitro, as well as to disease progression in rodent PH models. The mechanism by which mechanical signaling translates to reduced COX-2 activity in pulmonary vascular cells is unknown. The current work investigated the transcriptional regulators Yes-associated protein (YAP) and WW domain-containing Transcription regulator 1 (WWTR1, aka TAZ), which are known drivers of downstream mechanical signaling, in mediating stiffness-induced changes in COX-2 and prostaglandin activity in pulmonary artery smooth muscle cells (PASMCs). We found that YAP/TAZ activity is increased in PAH PASMCs and experimental PH, and is necessary for the development of stiffness-dependent remodeling phenotypes. Knockdown of YAP and TAZ markedly induces COX-2 expression and downstream prostaglandin production by approximately 3-fold, whereas overexpression of YAP or TAZ reduces COX-2 expression and prostaglandin production to near undetectable levels. Together, our findings demonstrate a stiffness-dependent YAP/TAZ-mediated positive feedback loop that drives remodeling phenotypes in PASMCs via reduced COX-2 and prostaglandin activity. The ability to interrupt this critical mechanobiologic feedback loop and enhance local prostaglandin activity via manipulation of YAP/TAZ signaling presents a highly attractive novel strategy for the treatment of PH.