Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette sub-family G member 2
Published online on July 05, 2017
Abstract
Accumulating data indicate that renal uric acid (UA) handling is altered in diabetes and by hypoglycemic agents. In addition, hyperinsulinemia is associated with hyperuricemia and hypouricosuria. However, the underlying mechanisms remain unclear. In this study, we aimed to investigate how diabetes and hypoglycemic agents alter the levels of renal UA transporters. In insulin-depleted diabetic rats with streptozotocin treatment, both UA excretion and fractional excretion of UA (FEUA) were increased, suggesting that tubular handling of UA is altered in this model. In the membrane fraction of the kidney, the expression of urate transporter 1 (URAT1) was significantly decreased, whereas that of ATP-binding cassette sub-family G member 2 (ABCG2) was increased, consistent with the increased renal UA clearance. Administration of insulin to the diabetic rats, but not of the SGLT2 inhibitor ipragliflozin, decreased UA excretion and alleviated UA transporter level changes. To confirm the contribution of insulin in the regulation of urate transporters, normal rats received insulin and separately ipragliflozin. Insulin significantly increased URAT1 and decreased ABCG2 levels, resulting in increased UA reabsorption. In contrast, SGLT2 inhibitor did not alter URAT1 or ABCG2 levels, although blood glucose levels were similarly reduced. Furthermore, we found that insulin significantly increased endogenous URAT1 levels in the membrane fraction of NRK-52E cells, the kidney epithelial cell line, demonstrating the direct effects of insulin on renal UA transport mechanisms. These results suggest a previously unrecognized mechanism for the anti-uricosuric effects of insulin, and provide novel insights into the renal UA handling in the diabetic state.