Mechanisms underlying vestibulo‐cerebellar motor learning in mice depend on movement direction
Published online on July 10, 2017
Abstract
Key points
Directionality, inherent to movements, has behavioural and neuronal correlates.
Direction of vestibular stimulation determines motor learning efficiency.
Vestibulo‐ocular reflex gain–increase correlates with Purkinje cell simple spike potentiation.
The locus of neural correlates for vestibulo‐ocular reflex adaptation is paradigm specific.
Abstract
Compensatory eye movements elicited by head rotation, also known as vestibulo‐ocular reflex (VOR), can be adapted with the use of visual feedback. The cerebellum is essential for this type of movement adaptation, although its neuronal correlates remain to be clarified. In the present study, we show that the direction of vestibular input determines the magnitude of eye movement adaptation induced by mismatched visual input in mice, with larger changes during contraversive head rotation. Moreover, the location of the neural correlate of this changed behaviour depends on the type of paradigm. Gain–increase paradigms induce increased simple spike (SS) activity in ipsilateral cerebellar Purkinje cells (PC), which is in line with eye movements triggered by optogenetic PC activation. By contrast, gain–decrease paradigms do not induce changes in SS activity, indicating that the murine vestibulo‐cerebellar cortical circuitry is optimally designed to enhance ipsiversive eye movements.