Causal Inference On Education Policies: A Survey Of Empirical Studies Using Pisa, Timss And Pirls
Published online on June 09, 2017
Abstract
The identification of the causal effects of educational policies is the top priority in recent education economics literature. As a result, a shift can be observed in the strategies of empirical studies. They have moved from the use of standard multivariate statistical methods, which identify correlations or associations between variables only, to more complex econometric strategies, which can help to identify causal relationships. However, exogenous variations in databases have to be identified in order to apply causal inference techniques. This is a far from straightforward task. For this reason, this paper provides an extensive and comprehensive overview of the literature using quasi‐experimental techniques applied to three well‐known international large‐scale comparative assessments, such as PISA, PIRLS or TIMSS, over the period 2004–2016. In particular, we review empirical studies employing instrumental variables, regression discontinuity designs, difference in differences and propensity score matching to the above databases. Additionally, we provide a detailed summary of estimation strategies, issues treated and profitability in terms of the quality of publications to encourage further potential evaluations. The paper concludes with some operational recommendations for prospective researchers in the field.