MetaTOC stay on top of your field, easily

Unpacking students' conceptualizations through haptic feedback

Journal of Computer Assisted Learning

Published online on

Abstract

While it is clear that the use of computer simulations has a beneficial effect on learning when compared to instruction without computer simulations, there is still room for improvement to fully realize their benefits for learning. Haptic technologies can fulfill the educational potential of computer simulations by adding the sense of touch. Visuohaptic simulations may not only help students visualize these concepts, but they may also have the capability of enriching the learning experience and enhancing retention. To provide additional insights about how students conceptualize abstract and difficult concepts in science, this study proposes a sequencing approach. The research questions are: (1) what are undergraduate students' ways of conceptualizing electric fields through haptic feedback? And (2) what are undergraduate students' perceptions of using visuohaptic simulations for their learning of electric force concepts? Participants included nine undergraduate students who participated in a think aloud procedure. Data were analysed qualitatively using open coding followed by axial coding. The results suggest that students' conceptualized electric force concepts through embodied haptic experiences by inferring force–distance relationship, sign inference, shape of field and indirectly inferring the concept of electric potential. Students also perceived the value of using visual plus haptic simulations to help them understand and retain concepts.