MetaTOC stay on top of your field, easily

Cholesterol metabolism and Cx43, Cx46, Cx50 gap junction protein expression and localisation in normal and diabetic and obese ob/ob and db/db mouse testes

, , ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Decreased fertility and birth rates are afflictions arising from metabolic disorders. This study assesses cholesterol metabolism and Cx46, Cx50, Cx43 expression in interstitium- and seminiferous tubule-enriched fractions of leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice, two type 2 diabetes and obesity models associated with infertility. Testosterone decreased, glucose, free and esterified cholesterol increased in serum whereas in interstitium, free and esterified cholesterol decreased in ob/ob and db/db. In tubules, a drop in esterified cholesterol caused free-to-esterified cholesterol ratios to augment in db/db. In tubules, only ACAT-1 and ACAT-2 protein levels significantly decreased in ob/ob not in db/db compared to WT and cholesterol transporters NPC1, ABCA1, SRBI and CD36 were imbalanced in both ob/ob and db/db. In tubules, 14kDaCx46 prevailed during development, 48-49 and 68-71kDaCx46 during adulthood; total Cx46 changed little. Compared to WT, 14kDaCx46 augmented whereas 48-49 and 68-71kDaCx46 diminished in tubules whereas the opposite occurred in interstitium in db/db and ob/ob. Total Cx50 and 51kDaCx50 increased in db/db and ob/ob interstitium and tubules. Cx43 levels decreased in ob/ob interstitium and tubules whereas in db/db, Cx43 decreased in interstitium but increased in tubules. Apoptosis levels measured by ELISA and apoptotic cell numbers labelled with Apostain significantly augmented in db/db not in ob/ob tubules. Testicular db/db capillaries were Cx50-positive but weakly Cx43-positive with a thickened lamina suggesting altered permeability. Our findings indicate that the db mutation-induced impairment of meiosis may arise from imbalances in cholesterol metabolism and upregulated Cx43 expression and phosphorylation in tubules.