MetaTOC stay on top of your field, easily

Analytical approximations of local‐Heston volatility model and error analysis

Mathematical Finance

Published online on

Abstract

This paper studies the expansion of an option price (with bounded Lipschitz payoff) in a stochastic volatility model including a local volatility component. The stochastic volatility is a square root process, which is widely used for modeling the behavior of the variance process (Heston model). The local volatility part is of general form, requiring only appropriate growth and boundedness assumptions. We rigorously establish tight error estimates of our expansions, using Malliavin calculus. The error analysis, which requires a careful treatment because of the lack of weak differentiability of the model, is interesting on its own. Moreover, in the particular case of call–put options, we also provide expansions of the Black–Scholes implied volatility that allow to obtain very simple formulas that are fast to compute compared to the Monte Carlo approach and maintain a very competitive accuracy.