Learning to reformulate long queries for clinical decision support
Journal of the American Society for Information Science and Technology
Published online on September 14, 2017
Abstract
The large volume of biomedical literature poses a serious problem for medical professionals, who are often struggling to keep current with it. At the same time, many health providers consider knowledge of the latest literature in their field a key component for successful clinical practice. In this work, we introduce two systems designed to help retrieving medical literature. Both receive a long, discursive clinical note as input query, and return highly relevant literature that could be used in support of clinical practice. The first system is an improved version of a method previously proposed by the authors; it combines pseudo relevance feedback and a domain‐specific term filter to reformulate the query. The second is an approach that uses a deep neural network to reformulate a clinical note. Both approaches were evaluated on the 2014 and 2015 TREC CDS datasets; in our tests, they outperform the previously proposed method by up to 28% in inferred NDCG; furthermore, they are competitive with the state of the art, achieving up to 8% improvement in inferred NDCG.