Glucose Uptake Inhibition Decreases Expressions of Receptor Activator of Nuclear Factor-kappa B Ligand (RANKL) and Osteocalcin in Osteocytic MLO-Y4-A2 Cells
AJP Endocrinology and Metabolism
Published online on October 10, 2017
Abstract
Bone and glucose metabolism are closely associated with each other. Both osteoblast and osteoclast functions are important for the action of osteocalcin, which plays pivotal roles as an endocrine hormone regulating glucose metabolism. However, it is unknown whether osteocytes are involved in the interaction between bone and glucose metabolism. We used MLO-Y4-A2, a murine long bone-derived osteocytic cell line, to investigate effects of glucose uptake inhibition on expressions of osteocalcin and bone-remodeling modulators in osteocytes. We found that glucose transporter 1 (GLUT1) is expressed in MLO-Y4-A2 cells and that treatment with phloretin, a GLUT inhibitor, significantly inhibited glucose uptake. Real-time PCR and western blot showed that phloretin significantly and dose-dependently decreased the expressions of RANKL and osteocalcin, whereas osteoprotegerin or sclerostin was not affected. Moreover, phloretin activated AMP-activated protein kinase (AMPK), an intracellular energy sensor. Coincubation of ara-A, an AMPK inhibitor, with phloretin canceled the phloretin-induced decrease in osteocalcin expression, but not RANKL. In contrast, phloretin suppressed phosphorylation of ERK1/2, JNK, and p38 MAPK, and treatments with a p38 inhibitor SB203580 and a MEK inhibitor PD98059, but not a JNK inhibitor SP600125, significantly decreased expressions of RANKL and osteocalcin. These results indicate that glucose uptake by GLUT1 is required for RANKL and osteocalcin expressions in osteocytes, and that inhibition of glucose uptake decreases their expressions through AMPK, ERK1/2 and p38 MAPK pathways. These findings suggest that lowering glucose uptake into osteocytes may contribute to maintain blood glucose levels by decreasing osteocalcin expression and RANKL-induced bone resorption.