MetaTOC stay on top of your field, easily

In vivo magnetofection: a novel approach for targeted topical delivery of nucleic acids for rectoanal motility disorders

, ,

AJP Gastrointestinal and Liver Physiology

Published online on

Abstract

In these studies, we developed a novel approach of in vivo magnetofection for localized delivery of nucleic acids such as micro-RNA-139-p (miR-139-5p, known to target Rho kinase2) to the circular smooth muscle layer of the internal anal sphincter (IAS). The IAS tone is known to play a major role in the rectoanal continence via activation of RhoA-associated kinase (RhoA/ROCK2). These studies established an optimized protocol for efficient gene delivery using an assembly of equal volumes of in vivo PolyMag and miR139-5p or anti-miR-139-5p (100 nM each) injected in the circular smooth muscle layer in the pin-pointed areas of the rat perianal region, and then incubated for 20 minutes under magnetic field. Magnetofection efficiency was confirmed and analyzed by confocal microscopy of FITC-tagged siRNA. Using physiological and biochemical approaches, we investigated the effects of miR-139-5p and anti-miR-139-5p on basal intraluminal IAS pressure (IASP), fecal pellet count, IAS tone, agonist-induced contraction, contraction-relaxation kinetics, and RhoA/ROCK2 signaling. Present studies demonstrate that magnetofection-mediated miR-139-5p delivery significantly decreased RhoA/ROCK2, p-MYPT1, and p-MLC20 signaling, leading to decreases in the lower basal IASP and IAS tone and in rates of contraction and relaxation, associated with increase in fecal pellet output. Interestingly, anti-miR-139-5p transfection had opposite effects on these parameters. Collectively, these data demonstrate that magnetofection is a promising novel method of in vivo gene delivery and of nucleotides to the internal anal sphincter for the site-directed and targeted therapy for rectoanal motility disorders.