MetaTOC stay on top of your field, easily

Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney

, , ,

Clinical and Experimental Pharmacology and Physiology

Published online on

Abstract

--- - |2 Summary End‐stage renal disease is a leading cause of morbidity and mortality worldwide. The prevalence of the disease and the number of patients who receive renal replacement therapy are expected to increase in the next decade. Accumulating evidence suggests that chronic hypoxia in the tubulointerstitium represents the final common pathway to end‐stage renal failure, and that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key players in kidney injury. However, ROS and RNS that exceed the physiological levels associated with the pathophysiology of most kidney diseases. The molecules that comprise ROS and RNS play an important role in regulating solute and water reabsorption in the kidney, which is vital for maintaining electrolyte homeostasis and the volume of extracellular fluid. This article reviews the physiological and pathophysiological role of ROS and RNS in normal kidney function and in various kidney diseases. - Clinical and Experimental Pharmacology and Physiology, EarlyView.