MetaTOC stay on top of your field, easily

Local cooling effect on perforation rates comparing the 980-1470 nm laser wavelengths used with endovenous laser ablation: double blind in vitro experimental study

, , , ,

Phlebology: The Journal of Venous Disease

Published online on

Abstract

Objective

Endovenous laser treatment (EVLA) is fast gaining acceptance as an alternative to open surgery for the treatment of saphenous vein incompetence. The method of action of these techniques is based on heat, making tumescence anaesthesia necessity. Heat-induced complications may occur with inadequate application of tumescent anaesthesia. Our hypothesis was, local cooling effect of tumescent anaesthesia on tunica adventitia might be kept undamaged from disruption due to the thermal injury.

Methods

We experimented with two popular laser wavelengths (980 and 1470 nm) and with two different thermal media (+4 and +24°C) in vitro for perforation. Twenty different 12 cm length vein pieces were numbered randomly to set up four groups of the experiment. Endovenous laser procedures were applied in same manner in a unique design test tube with same energy density per pieces on same duration (10 W/second) (linear endovenous energy density 60 J/cm). Procedure video was recorded for macroscopic perforations. All postprocedure vein segments were examined microscopically.

Results

Activities of both wavelengths were much better in cold medium (P < 0.05). Cold tumescent anaesthesia reduces the bleeding complication rate. But the performance of 1470 nm laser was better than that of 980 nm in cold environment (P = 0.0136).

Conclusions

It can be commented that reducing the ambient temperature is more beneficial than modifying the laser wavelength on perforation rates. Therefore we suppose tumescent anaesthesia temperature is effective on perforation independently from the wavelengths or type of the laser fibre.