MetaTOC stay on top of your field, easily

Finite element analysis and experimental validation of the wedge rolling process

, , ,

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Published online on

Abstract

A numerical model, developed for LS-Dyna solver, aimed to study the wedge rolling process is presented in this article. In addition, a comparison is made between the experimental and simulated results in order to set up the numerical model’s definition and simulation parameters. The computational performances are evaluated throughout this article to identify the best practice parameters for cold rolling numerical analysis using wedge tools. For an evaluation of the performances of the numerical model, an experimental system was developed to analyse the process parameters of the complex profiles with grooves formed by wedge tools. The methodologies used to record and evaluate the experimental results and the capabilities of the technique are discussed. For a complete analysis, the material behaviour is described by using a five-parameter strain-hardening law. Both the radial force (process force) and the micro-hardness were measured using the Vickers method on a radial section of the rolled piece. The issues addressing the numerical simulation can be extrapolated to other processes (e.g. riveting, flow forming) as this article provides the required information for the development of reliable numerical models.