Directional morphological approaches from image processing applied to automatic tool selection in computer numerical control milling machine
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Published online on July 24, 2013
Abstract
Automatic tool selection in milling operation has become a very important step in the manufacturing and planning processes for 2.5D piece machining. The main contribution of this article is the development of a new method based on directional morphological approaches, applied to automatic tool selection in computer numerical control milling machines for machining a 2.5D of a geometry piece provided of three-dimensional model of computer-aided design or from an image taken with other devices. First, the image is preprocessed by applying several image processing techniques. Later, mathematical morphology as erosion or dilation to create structural element with the shape of the cutting tool is used. The method displaces a structural element throughout the entire image with the values of the lengths of the piece boundary and the cutting tool to select the correct cutting tool and tool path. Besides, with the same structural element, the zig and zig-zag contour trajectories are obtained in standard computer numerical control code. Results from these experiments show that the method makes it possible to obtain good performance in automatic tool selection when several types of pieces are processed.