MetaTOC stay on top of your field, easily

Combined control strategy using internal model control and adaptive inverse control for electro-hydraulic shaking table

, , , , , , ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

An electro-hydraulic shaking table is a useful experimental apparatus to real-time replicate the desired acceleration signal for evaluating the performance of the tested structural systems. The article proposes a combined control strategy to improve the tracking accuracy of the electro-hydraulic shaking table. First, the combined control strategy utilizes an adaptive inverse control as a feedforward controller for extending the acceleration frequency bandwidth of the electro-hydraulic shaking table when the estimated plant model may be a nonminimum phase system and its inverse model is an unstable system. The adaptive inverse control feedforward compensator guarantees the stability of the estimated inverse transfer function. Then, the combined control strategy employs an improved internal model control for obtaining high fidelity tracking accuracy after the modeling error between the estimated inverse transfer function using adaptive inverse control and the electro-hydraulic shaking table actual inverse system is improved by the improved internal model control. So, the proposed control strategy combines the merits of adaptive inverse control feedforward compensator and improved internal model control. The combined strategy is programmed in MATLAB/Simulink, and then is compiled to a real-time PC system with xPC target technology for implementation. The experimental results demonstrate that a better tracking performance with the proposed combined control strategy is achieved in an electro-hydraulic shaking table than with a conventional controller.