MetaTOC stay on top of your field, easily

An integrated model for high speed motorized spindles? Dynamic behaviors

, , , ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

With increasing popularity in high-speed machining due to its high efficiency, there is a vital need for more accurate prediction of dynamic behaviors for high-speed motorized spindles. The spindle units integrate tools with built-in motors hence a comprehensive model is required to include the multi-physics coupling property. This article presents an integrated model which consists of four coupled sub-models: state, shaft, bearing, and thermal model. Using the variational principle, a state model for the motor-spindle system is generated, which can describe the running state of the spindle, and provide electrical parameters to study the motor heat generation for thermal model and the unbalanced magnetic force for shaft dynamic model. The thermal model is coupled with the bearing and shaft dynamic model through bearing heat generation and thermal displacement. Thus, the entire model becomes an integrated electro-thermo-mechanical dynamic model. The proposed integrated model is investigated by a solution procedure and validated experimentally, and it shows that the model is capable of accurately predicting the dynamic behaviors of motorized spindles. The coupling relationship among the electrical, thermal, and mechanical behaviors of the system becomes clear from the simulation and experimental results, and some feasible methods to improve the dynamic performances of the system are obtained.