MetaTOC stay on top of your field, easily

Optimization of support vector machine based multi-fault classification with evolutionary algorithms from time domain vibration data of gears

,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

In the present work, a multi-fault classification of gears has been attempted by the support vector machine learning technique using the vibration data in time domain. A proper utilization of the support vector machine is based on the selection of support vector machine parameters. The main focus of this article is to examine the performance of the multiclass ability of support vector machine techniques by optimizing its parameters using the grid-search method, genetic algorithm and artificial bee colony algorithm. Four fault conditions were considered. A group of statistical features were extracted from time domain data. The prediction of fault classification is attempted at the same angular speed as the measured data as well as innovatively at the intermediate and extrapolated angular speed conditions. This is due to the fact that it is not feasible to have measurement of vibration data at all continuous speeds of interest. The classification ability is noted and it shows an excellent prediction performance.