MetaTOC stay on top of your field, easily

A hyperpolarization-activated ion current of amphibian oocytes

, , ,

Pflügers Archiv

Published online on

Abstract

A comparative analysis of a hyperpolarization-activated ion current present in amphibian oocytes was performed using the two-electrode voltage-clamp technique in Xenopus laevis, Xenopus tropicalis, and Ambystoma mexicanum. This current appears to be driven mainly by Cl ions, is independent of Ca2+, and is made evident by applying extremely negative voltage pulses; it shows a slow activating phase and little or no desensitization. The pharmacological profile of the current is complex. The different channel blocker used for Cl, K+, Na+ and Ca2+ conductances, exhibited various degrees of inhibition depending of the species. The profiles illustrate the intricacy of the components that give rise to this current. During X. laevis oogenesis, the hyperpolarization-activated current is present at all stages of oocytes tested (II–VI), and the amplitude of the current increases from about 50 nA in stage I to more than 1 μA in stage VI; nevertheless, there was no apparent modification of the kinetics. Our results suggest that the hyperpolarization-activated current is present both in order Anura and Urodela oocytes. However, the electrophysiological and pharmacological characteristics are quite perplexing and seem to suggest a mixture of ionic conductances that includes the activation of both anionic and cationic channels, most probably transiently opened due to the extreme hyperpolarizion of the plasma membrane. As a possible mechanism for the generation of the current, a kinetic model which fits the data suggests the opening of pores in the plasma membrane whose ion selectivity is dependent on the extracellular Cl concentration. The extreme voltage conditions could induce the opening of otherwise latent pores in plasma membrane proteins (i.e., carriers), resembling the ´slippage´ events already described for some carriers. These observations should be valuable for other groups trying to express cloned, voltage-dependent ion channels in oocytes of amphibian in which hyperpolarizing voltage pulses are applied to activate the channels.