MetaTOC stay on top of your field, easily

Dietary protein decreases exercise endurance through rapamycin-sensitive suppression of muscle mitochondria.

, , , , ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Loss of physical performance is linked not only to decreased activity in daily life but also to increased onset of cardiovascular diseases and mortality. A high-protein diet is recommended for aged individuals in order to preserve muscle mass; however, the regulation of muscle mitochondria by dietary protein has not been clarified. We investigated the long-term effects of a high-protein diet on muscle properties, focusing especially on muscle mitochondria. Mice were fed a high-protein diet from the age of 8 weeks and examined for mitochondrial properties and exercise endurance at the ages of 20 and 50 weeks. Compared to normal chow, a high-protein diet significantly decreased the amount of muscle mitochondria, the mitochondrial activity and the running distance at 50 weeks, although it increased muscle mass and grip power. Inhibition of TORC1-dependent signal pathways by rapamycin from 8 weeks suppressed the decline in mitochondria and exercise endurance observed when mice were fed the high-protein diet in association with preserved AMPK activity. Collectively, these findings suggest a role for dietary protein as a suppressor of muscle mitochondria and indicate that the age-associated decline in exercise endurance might be accelerated by excessive dietary protein through rapamycin-sensitive suppression of muscle mitochondria.