Prolactin promotes normal liver growth, survival, and regeneration in rodents: Effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis
AJP Regulatory Integrative and Comparative Physiology
Published online on August 15, 2013
Abstract
Prolactin (PRL) is a potent liver mitogen and proangiogenic hormone. Here, we used hyperprolactinemic rats and PRL receptor null mice (PRLR-/-) to study the effect of PRL on liver growth and angiogenesis before and after partial hepatectomy (PH). Liver to body weight ratio (LBW), hepatocyte and sinusoidal endothelial cell (SEC) proliferation, and hepatic expression of VEGF were measured before and after PH in hyperprolactinemic rats, generated by placing two anterior pituitary glands (AP) under the kidney capsule. Also, LBW and hepatic expression of IL-6, and suppressor of cytokine signaling-3 (SOCS-3) were evaluated in wild type and PRLR-/- mice before and after PH. Hyperprolactinemia increased the LBW, the proliferation of hepatocytes and SEC, and VEGF hepatic expression. Also, liver regeneration was increased in AP-grafted rats and was accompanied by elevated hepatocyte and SEC proliferation, and VEGF expression compared to non-grafted controls. Lowering circulating PRL levels with CB-154, an inhibitor of AP PRL secretion, prevented AP-induced stimulation of liver growth. Relative to wild type animals, PRLR-/- mice had smaller livers, and soon after PH they displayed a ~2-fold increased mortality, and elevated and reduced hepatic IL-6 and SOCS-3 expression, respectively. However, liver regeneration was improved in surviving PRLR-/- mice. PRL stimulates normal liver growth, promotes survival, and regulates liver regeneration by mechanisms that may include hepatic downregulation of IL-6 and upregulation of SOCS-3, increased hepatocyte proliferation, and angiogenesis. PRL contributes to physiological liver growth and has potential clinical utility for ensuring survival and regulating liver mass in diseases, injuries, or liver surgery.