MetaTOC stay on top of your field, easily

Cell surface F1/FO ATP synthase contributes to interstitial flow-mediated development of the acidic microenvironment in tumor tissues

, , ,

AJP Cell Physiology

Published online on

Abstract

To address pivotal roles of cell surface F1/FO ATP synthase in the development of acidic microenvironment in tumor tissues, we investigated effects of shear stress stimulation on the cultured human breast cancer cells, MDA-MB-231 and MDA-MB-157 or human melanoma cells, SK-Mel-1. Shear stress stimulation (0.5-5.0 dyn/cm2), the levels of which are similar to those produced by the interstitial flow, induced strength-dependent co-release of ATP and H+ from the cells, which triggered CO2 gas excretion. In contrast, the same level of shear stress stimulation did not induce significant ATP release and CO2 gas excretion from the control human mammary epithelial cells (HMEC). Marked immunocytochemical and mRNA expression of cell surface F1/FO ATP synthase, vacuolar-ATPase (V-ATPase), carbonic anhydrase type IX, and ectonucleoside triphosphate diphosphohydrolase (ENTPDase) 3 were detected in MDA-MB-231 cells, but little or no expression on the HMEC. Pretreatment with cell surface F1/FO ATP synthase inhibitors, but not cell surface V-ATPase inhibitors caused a significant reduction of the shear stress stimulation-mediated ATP release and CO2 gas excretion from MDA-MB-231 cells. The ENTPDase activity in the shear stress-loaded MDA-MB-231 cell culture medium supernatant increased significantly in a time-dependent manner. In addition, MDA-MB-231 cells displayed strong staining for purinergic 2Y1 (P2Y1) receptors on their surfaces, and the receptors partially co-localized with ENTPDase 3. These findings suggest that cell surface F1/FO ATP synthase, but not V-ATPase may play key roles in the development of interstitial flow-mediated acidic microenvironment in tumor tissues through the shear stress stimulation-induced ATP and H+ co-release and CO2 gas production.