MetaTOC stay on top of your field, easily

Rescue of Heart Lipoprotein Lipase Knockout Mice Confirms a Role for Triglyceride in Optimal Heart Metabolism and Function

, , , , , , , , , , , ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Hearts utilize fatty acids as a primary source of energy. The sources of those lipids include free fatty acids and lipoprotein triglycerides. Deletion of the primary triglyceride hydrolyzing enzyme lipoprotein lipase (LpL) leads to cardiac dysfunction. Whether heart LpL knockout (hLpL0) mice are compromised due a deficiency in energetic substrates is unknown. To test whether alternative sources of energy will prevent cardiac dysfunction in hLpL0 mice. Two different models were used to supply non-lipid energy: 1) hLpL0 mice were crossed with mice transgenically expressing GLUT1 in cardiomyocytes to increase glucose uptake into the heart. This cross corrected cardiac dysfunction, reduced cardiac hypertrophy, and increased myocardial ATP. 2) Mice were randomly assigned to a sedentary or training group (swimming) at 3 months of age, which leads to increased skeletal muscle production of lactate. hLpL0 mice had greater expression of the lactate transporter monocarboxylate transporter-1 (MCT-1) and increased cardiac lactate uptake. Compared to hearts from sedentary hLpL0 mice, hearts from trained hLpL0 mice had adaptive hypertrophy and improved cardiac function. We conclude that defective energy intake and not the reduced uptake of fat-soluble vitamins or cholesterol is responsible for cardiac dysfunction in hLpL0 mice. In addition, our studies suggest that adaptations in cardiac metabolism contribute to the beneficial effects of exercise on the myocardium of patients with heart failure.