MetaTOC stay on top of your field, easily

GLP-1-derived nonapeptide GLP-1(28-36)amide represses hepatic gluconeogenic gene expression and improves pyruvate tolerance in high fat diet fed mice

, , ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Certain "degradation" products of GLP-1 were found to possess beneficial effects on metabolic homeostasis. Here, we investigated the function of the C-terminal fragment of GLP-1, the nonapeptide GLP-1(28-36)amide, in hepatic glucose metabolism. C57BL/6 mice fed with high fat diet (HFD) for 13 wks were i.p. injected with GLP-1(28-36)amide for 6 wks. A significant reduction in body weight gain in response to HFD feeding was observed in GLP-1(28-36)amide-treated mice. GLP-1(28-36)amide administration moderately improved glucose disposal during glucose tolerance test but more drastically attenuated glucose production during pyruvate tolerance test, associated with reduced hepatic expression of gluconeogenic genes Pck1, G6pc, and Ppargc1a. Mice treated with GLP-1(28-36)amide exhibited increased phosphorylation of PKA targets including cAMP response element-binding protein (CREB), ATF-1, and β-catenin. In primary hepatocytes, GLP-1(28-36)amide reduced glucose production and expression of Pck1, G6pc, and Ppargc1a, associated with increased cAMP content and PKA target phosphorylation. These effects were attenuated by PKA inhibition. We suggest that GLP-1(28-36)amide represses hepatic gluconeogenesis involving the activation of components of the cAMP/PKA signaling pathway. This study further confirmed that GLP-1(28-36)amide possesses therapeutic potential for diabetes and other metabolic disorders.