ENaC-expressing neurons in the sensory circumventricular organs become c-Fos activated following systemic sodium changes
AJP Regulatory Integrative and Comparative Physiology
Published online on September 18, 2013
Abstract
The sensory circumventricular organs (CVOs) are specialized collections of neurons and glia that lie in the midline of the IIIrd and IVth ventricles of the brain, lack a blood-brain barrier, and function as chemosensors, sampling both the cerebrospinal fluid and plasma. These structures, which include the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), are sensitive to changes in sodium concentration but the cellular mechanisms involved remain unknown. Epithelial sodium channel (ENaC)-expressing neurons of the CVOs may be involved in this process. Here we demonstrate with immunohistochemical and in situ hybridization methods that ENaC-expressing neurons are densely concentrated in the sensory CVOs. These neurons become c-Fos activated, a marker for neuronal activity, after various manipulations of peripheral levels of sodium including systemic injections with hypertonic saline, dietary sodium deprivation, and sodium repletion after prolonged sodium deprivation. The increases seen c-Fos activity in the CVOs were correlated with parallel increases in plasma sodium levels. Since ENaCs play a central role in sodium reabsorption in kidney and other epithelia, we present a hypothesis here suggesting that these channels may also serve a related function in the CVOs. ENaCs could be a significant factor in modulating CVO neuronal activity by controlling the magnitude of sodium permeability in neurons. Hence, some of the same circulating hormones controlling ENaC expression in kidney, such as angiotensin II and atrial natriuretic peptide, may coordinate ENaC expression in sensory CVO neurons, and could potentially orchestrate sodium appetite, osmoregulation, and vasomotor sympathetic drive.