MetaTOC stay on top of your field, easily

Aging increases CCN1 expression leading to muscle senescence

, , , , ,

AJP Cell Physiology

Published online on

Abstract

Using microarray analysis, we found that aging sarcopenia is associated with a sharp increase in the mRNA of the matricellular protein CCN1 (Cyr61/CTGF/Nov). CCN1 mRNA was up-regulated 113-fold in muscle of aged versus young rats. CCN1 protein was increased in aging muscle in both rats (2.8-fold) and mice (3.8-fold). When muscle progenitor cells (MPCs) were treated with recombinant CCN1, cell proliferation was decreased but there was no change in the myogenic marker myoD. However, the CCN1 treated MPCs did express a senescence marker (SA-βgal). Interestingly, we found CCN1 increased p53, p16Ink4A and pRP (hypophosphorylated retinoblastoma protein) protein levels, all of which can arrest cell growth in MPCs. When MPCs were treated with aged rodent serum CCN1 mRNA increased by 7-fold and protein increased by 3-fold suggesting the presence of a circulating regulator. Therefore, we looked for a circulating regulator. Wnt-3a, a stimulator of CCN1 expression, was increased in serum from elderly humans (2.6-fold) and aged rodents (2.0-fold) compared with young controls. We transduced C2C12 myoblasts with wnt-3a and found that CCN1 protein was increased in a time and dose dependent manner. We conclude that in aging muscle, the circulating factor, wnt-3a, acts to increase CCN1 expression, prompting muscle senescence by activating cell arrest proteins.