MetaTOC stay on top of your field, easily

Effects of the Green Tea Polyphenol, Epigallocatechin-3-Gallate (EGCG), on High Fat Diet-Induced Insulin Resistance and Endothelial Dysfunction

, ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Insulin resistance, a hallmark of metabolic disorders, is a risk factor for diabetes and cardiovascular disease. Impairment of insulin responsiveness in vascular endothelium contributes to insulin resistance. The reciprocal relationship between insulin resistance and endothelial dysfunction augments the pathophysiology of metabolism and cardiovascular functions. The most abundant green tea polyphenol, epigallocatechin-3-gallate (EGCG), has been shown to have vasodilator action in vessels by activation of endothelial nitric oxide synthase (eNOS). However, it is not known whether EGCG has a beneficial effect in high fat diet (HFD)-induced endothelial dysfunction. Male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD with or without EGCG supplement (50 mg/kg/day) for 10 weeks. Mice fed a HFD with EGCG supplement gained less body weight and showed improved insulin sensitivity. In vehicle treated HFD mice, endothelial function was impaired in response to insulin but not to acetylcholine, while EGCG treated HFD group showed improved insulin-stimulated vasodilation. Interestingly, EGCG intake reduced macrophage infiltration into aortic tissues in HFD mice. Pre-treatment with EGCG restored the insulin-stimulated phosphorylation of eNOS, insulin receptor substrate-1 (IRS-1) and protein kinase B (Akt), which was inhibited by palmitate (200 μM, 5 hr) in primary bovine aortic endothelial cells. From these results, we conclude that supplementation of EGCG improves glucose tolerance, insulin sensitivity and endothelial function. The results suggest that EGCG may have beneficial health effects in glucose metabolism and endothelial function through modulating HFD-induced inflammatory response.