MetaTOC stay on top of your field, easily

The role of AMPK and PPAR{gamma}1 in exercise-induced lipoprotein lipase in skeletal muscle

, , , , ,

AJP Endocrinology and Metabolism

Published online on

Abstract

Exercise can effectively ameliorate type 2 diabetes and insulin resistance. Here we show that the mRNA levels of one of peroxisome proliferator-activated receptor (PPAR) family members, PPAR1, and genes related to energy metabolism, including PPAR coactivator-1 protein α (PGC-1α) and lipoprotein lipase (LPL), increased in the gastrocnemius muscle of habitual exercise-trained mice. When mice were intraperitoneally administered an AMP-activated protein kinase (AMPK) activator 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), the mRNA levels of the aforementioned three genes increased in gastrocnemius muscle. AICAR treatment to C2C12 differentiated myotubes also increased PPAR1 mRNA levels, but not PPARα and mRNA levels, concomitant with increased PGC-1α mRNA levels. An AMPK inhibitor, compound C, blocked these AICAR effects. AICAR treatment increased the half-life of PPAR1 mRNA by nearly 3-fold (4 h - 12 h) by activating AMPK. When C2C12 myoblast cells infected with a PPAR1 expression lentivirus were differentiated into myotubes, PPAR1 overexpression dramatically increased LPL mRNA levels by more than 40-fold. In contrast, when PPAR1 expression was suppressed in C2C12 myotubes, LPL mRNA levels significantly reduced and the effect of AICAR on increased LPL gene expression was almost completely blocked. These results indicated that PPAR1 was intimately involved in LPL gene expression in skeletal muscle and the AMPK-PPAR1 pathway may play a role in exercise-induced LPL expression. Thus, we identified a novel critical role for PPAR1 in response to AMPK activation for controlling the expression of a subset of genes associated with metabolic regulation in skeletal muscle.