MetaTOC stay on top of your field, easily

Cardiovascular responses to water immersion in humans: Impact on cerebral perfusion

, , , , ,

AJP Regulatory Integrative and Comparative Physiology

Published online on

Abstract

Episodic increases in cerebrovascular perfusion and shear stress may have beneficial impacts on endothelial function that improve brain health. We hypothesised that water immersion to the level of the right atrium in humans would increase cerebral perfusion. We continuously measured, in 9 young (mean±SD, 24.6 ± 2.0 yrs) healthy men, systemic hemodynamic variables along with blood flows in the common carotid and middle and posterior cerebral arteries during controlled filling and emptying of a water tank to the level of the right atrium. Mean arterial pressure (80 ± 9 vs 91 ± 12 mmHg, P<0.05), cardiac output (4.8 ± 0.7 vs 5.1±0.6 L/min, P<0.05) and end-tidal carbon dioxide (PetCO2, 39.5 ± 2.0 vs 44.4 ± 3.5 mmHg, P<0.05) increased with water immersion, along with middle (59 ± 6 vs 64 ± 6 cm/s, P<0.05) and posterior cerebral artery blood flow velocities (41 ± 9 vs 44 ± 10 cm/s, P<0.05). These changes were reversed when the tank was emptied. Water immersion is associated with haemodynamic and PetCO2 changes, which increase cerebral blood velocities in humans. This study provides an evidence base for future studies to examine the potential addictive effect of exercise in water on improving cerebrovascular health.