MetaTOC stay on top of your field, easily

The Effects of Chance Correlations on Partial Least Squares Path Modeling

Organizational Research Methods

Published online on

Abstract

Partial least squares path modeling (PLS) has been increasing in popularity as a form of or an alternative to structural equation modeling (SEM) and has currently considerable momentum in some management disciplines. Despite recent criticism toward the method, most existing studies analyzing the performance of PLS have reached positive conclusions. This article shows that most of the evidence for the usefulness of the method has been a misinterpretation. The analysis presented shows that PLS amplifies the effects of chance correlations in a unique way and this effect explains prior simulations results better than the previous interpretations. It is unlikely that a researcher would willingly amplify error, and therefore the results show that the usefulness of the PLS method is a fallacy. There are much better ways to compensate for the attenuation effect caused by using latent variable scores to estimate SEM models than creating a bias into the opposite direction.