Cortisol increases CXCR4 expression but does not affect CD62L and CCR7 levels on specific T cell subsets in humans
AJP Endocrinology and Metabolism
Published online on April 22, 2014
Abstract
Glucocorticoids are well-known to affect T-cell migration, leading to a redistribution of the cells from blood to the bone marrow, accompanied by a concurrent suppression of lymph node homing. Despite numerous studies in this context with most of them employing synthetic glucocorticoids in rather non-physiological doses, the mechanisms of this redistribution are not well understood. Here, we investigated in healthy men the impact of cortisol at physiological concentrations on the expression of different migration molecules on 8 T-cell subpopulations in vivo and in vitro. Hydrocortisone (Cortisol, 22 mg) infused during nocturnal rest when endogenous cortisol levels are low, compared with placebo, differentially reduced numbers of T-cell subsets, with CD4+ and CD8+ naïve subsets exhibiting the strongest reduction. Hydrocortisone in vivo and in vitro increased CXCR4 expression, which presumably mediates the recruitment of T-cells to the bone marrow. Expression of the lymph node homing receptor CD62L on total CD3+ and CD8+ T-cells appeared reduced following hydrocortisone infusion. However this was due to a selective extravasation of CD62L+ T-cell subsets, as hydrocortisone did neither affect CD62L expression on a subpopulation level nor did it affect CD62L expression in vitro. Corresponding results in opposite direction were observed after blocking endogenous cortisol synthesis by metyrapone. CCR7, another lymph node homing receptor, was also unaffected by hydrocortisone in vitro. Thus, cortisol seems to redirect T-cells to the bone marrow by up-regulating their CXCR4 expression, whereas its inhibiting effect on T-cell homing to lymph nodes is apparently regulated independently of the expression of classical homing receptors.