Citrulline does not enhance blood flow, microvascular circulation, or myofibrillar protein synthesis in elderly men at rest or following exercise
AJP Endocrinology and Metabolism
Published online on May 13, 2014
Abstract
Ageing is associated with anabolic resistance; a reduced sensitivity of myofibrillar protein synthesis (MPS) to postprandial hyperaminoacidemia, particularly with low protein doses. Impairments in postprandial skeletal muscle blood flow and/or microvascular perfusion with hyperaminoacidemia and hyperinsulinemia may contribute to anabolic resistance. We examined whether providing citrulline, a precursor for arginine and nitric oxide synthesis, would increase arterial blood flow, skeletal muscle microvascular perfusion, MPS, and signalling through mTORC1. Twenty one elderly males (65-80 y) completed acute unilateral resistance exercise prior to being assigned to ingest a: high dose (45g) of whey protein (WHEY), or a low dose (15g) of whey protein with 10g of citrulline (WHEY+CIT), or with 10g of non-essential amino acids (WHEY+NEAA). A primed continuous infusion of L-[ring-13C6] phenylalanine with serial muscle biopsies was used to measure MPS and protein phosphorylation, while ultrasound was used to measure microvascular circulation under basal and postprandial conditions in both a rested (FED) and exercised (EX-FED) leg. Argininemia was greater in WHEY+CIT vs. WHEY and WHEY+NEAA from 30-300 min post-exercise (P<0.001), but there were no treatment differences in blood flow, or microvascular perfusion (all P>0.05). Phosphorylation of p70S6kThr389 was greater in WHEY vs. WHEY+NEAA (P=0.02). Postprandial MPS was greater in WHEY vs. WHEY+CIT and WHEY+NEAA under both FED (WHEY: ~128%; WHEY+CIT: ~56%; WHEY+NEAA: ~38%) and EX-FED (WHEY: ~251%; WHEY+CIT: ~124%; WHEY+NEAA: ~108%) conditions (P=0.003). Citrulline co-ingestion with a low quantity of protein was ineffective in augmenting the anabolic properties of protein compared to non-essential amino acids.