MetaTOC stay on top of your field, easily

Children's cognitive representation of the mathematical number line

,

Developmental Science

Published online on

Abstract

Learning of the mathematical number line has been hypothesized to be dependent on an inherent sense of approximate quantity. Children's number line placements are predicted to conform to the underlying properties of this system; specifically, placements are exaggerated for small numerals and compressed for larger ones. Alternative hypotheses are based on proportional reasoning; specifically, numerals are placed relative to set anchors such as end points on the line. Traditional testing of these alternatives involves fitting group medians to corresponding regression models which assumes homogenous residuals and thus does not capture useful information from between‐ and within‐child variation in placements across the number line. To more fully assess differential predictions, we developed a novel set of hierarchical statistical models that enable the simultaneous estimation of mean levels of and variation in performance, as well as developmental transitions. Using these techniques we fitted the number line placements of 224 children longitudinally assessed from first to fifth grade, inclusive. The compression pattern was evident in mean performance in first grade, but was the best fit for only 20% of first graders when the full range of variation in the data are modeled. Most first graders' placements suggested use of end points, consistent with proportional reasoning. Developmental transition involved incorporation of a mid‐point anchor, consistent with a modified proportional reasoning strategy. The methodology introduced here enables a more nuanced assessment of children's number line representation and learning than any previous approaches and indicates that developmental improvement largely results from midpoint segmentation of the line. Learning of the mathematical number line has been hypothesized to be dependent on an inherent sense of approximate quantity. Children's number line placements are predicted to conform to the underlying properties of this system; specifically, placements are exaggerated for small numerals and compressed for larger ones. Alternative hypotheses are based on proportional reasoning; specifically, numerals are placed relative to set anchors such as end points on the line. Applying novel statistical models that capture mean performance and variance to the number line placements of 224 children from first to fifth grade, inclusive, provided strong evidence for proportional reasoning; specifically, the two cycle and scallop models.