Study of self-calibration and multilateration in machine tool volumetric verification for laser tracker error reduction
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Published online on December 05, 2013
Abstract
This article aims to present the influence of the measurement uncertainty of a commercial laser tracker on the volumetric verification of a machine tool through the study of verification procedures that are affected by measurement uncertainty, multilateration and laser tracker self-calibration. Self-calibration provides relative positioning between measuring coordinate systems (laser trackers) and the reference system from the measured points of the same mesh. The measured points are affected by the noise of each laser tracker; therefore, they provide positions that are different from the real positions of the laser trackers. By applying the technique of multilateration and by knowing the positions of the laser trackers, the measurement noise can be reduced. The range of the measurement noise reduction is influenced by the radial measurement noise of the laser tracker, the distance between the laser tracker and the measured point and the techniques that multilateration and laser tracker self-calibration employs. This article presents different laser tracker self-calibration procedures, a least squares adjustment, trilateration and quadrilateration as well as the scope and appropriateness of each method relative to the laser tracker measurement noise. Moreover, the influences of radial laser tracker noise on the trilateration and quadrilateration techniques are described as well as the influence of the distance between the laser tracker and the measured point on multilateration.