MetaTOC stay on top of your field, easily

Leg kinematic analysis and prototype experiments of walking-operating multifunctional hexapod robot

,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

This paper presents kinematic analysis of a 3-degree of freedom parallel mechanism for hexapod walking-operating multifuctional robot. Each leg of the robot consists of three limbs: universal joint – prismatic joint chain (1-UP) and universal joint – prismatic joint – spherical joint chain (2-UPS) and at the end of the leg there is passive spherical joint to adjust to the uneven ground. In this paper, first the forward kinematic model is built and it shows that the model has close-form solution. Then the work space is discussed in which the robot feet trajectories can be projected. It can be shown that the current trajectories of the feet only take very small work space. After that force analysis is performed and the results show that the payload capability of the mechanism is very high. Experiments of the prototype show that the robot can walk easily with more than 150 kg loads while the step size is more than 0.5 m.