MetaTOC stay on top of your field, easily

Novel quasi-continuous super-twisting high-order sliding mode controllers for output feedback tracking control of robot manipulators

, ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

In this paper, a robust output feedback tracking control scheme for uncertain robot manipulators with only position measurements is investigated. First, a quasi-continuous second-order sliding mode (QC2S)-based exact differentiator and super-twisting second-order sliding mode (STW2S) controllers are designed to guarantee finite time convergence. Although the QC2S produces continuous control and less chattering than that of a conventional sliding mode controller and other high-order sliding mode controllers, a large amount of chattering exists when the sliding manifold is defined by the equation $$s=\stackrel{\cdot }{s}=0$$ . To decrease the chattering, an uncertainty observer is used to compensate for the uncertainty effects, and this controller may possess a smaller switching gain. Compared to the QC2S controller, the STW2S has less chattering and tracking error when the system remains on the sliding manifold $$s=\stackrel{\cdot }{s}=0$$ . Therefore, to further eliminate the chattering and obtain a faster transient response and higher tracking precision, we develop a quasi-continuous super-twisting second-order sliding mode controller, which integrates both the merits of QC2S and STW2S controllers. The stability and convergence of the proposed scheme are theoretically demonstrated. Finally, computer simulation results for a PUMA560 robot comparing with conventional QC2S and STW2S controllers are shown to verify the effectiveness of the proposed algorithm.