MetaTOC stay on top of your field, easily

Turbofan duct geometry optimization for low noise using remote continuous adjoint method

, ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

In this paper, a remote continuous adjoint-based acoustic propagation (RABAP) method is proposed for low noise turbofan duct design. The goal is to develop a set of adjoint equations and their corresponding boundary conditions in order to quantify the influence of geometry modifications on the amplitude of sound pressure at a near-field location. The governing equations for the 2.5D acoustic perturbation equation solver (APE) formulation for duct acoustic propagation is first introduced. This is followed by the formulation and discretization of the remote continuous adjoint equations based on 2.5D APE. The special treatment of the adjoint boundary condition to obtain sensitivities derivatives is also discussed. The theory is applied to acoustic design of an axisymmetric fan bypass duct for two different tone noise radiations. The 2.5D APE is further validated using comparisons to an experiment data of the TURNEX nozzle geometry. The implementation of the remote continuous adjoint method is validated by comparing the sensitivity derivative with that obtained using finite difference method. The result obtained confirms the effectiveness and efficiency of the proposed RABAP framework.