MetaTOC stay on top of your field, easily

Design and analysis of a tendon-based MRI-compatible surgery robot for transperineal prostate needle placement

, , , ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

Tendon-based transmission has significant advantages in the development of a surgical robot, which is fully magnetic resonance imaging compatible and can work dexterously in the very limited space inside magnetic resonance imaging core. According to the requirements of magnetic resonance imaging compatibility, a novel 6 degrees of freedom tendon-based surgical robot composed of three independent modules is developed in this paper. After a brief introduction to the robot, the direct and inverse kinematic equations are deduced by applying the concept of screw displacements, and the reachable workspace of the robot is calculated. As to the static force analysis, we apply the principle of virtual work to derive a transmission between the equivalent joint torques and the tendon forces. By the use of the pseudoinverse technique, a systematic method is developed for the resolution of redundant tendon forces.