MetaTOC stay on top of your field, easily

Design and analysis of an X-Y parallel nanopositioner supporting large-stroke servomechanism

, ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

In this paper, we consider the design and analysis of an X–Y parallel piezoelectric-actuator-driven nanopositioner with a novel two-stage amplifying mechanism, where the mechanical design is optimized to achieve a large stroke and high-natural frequency for the purpose of high-performance servomechanism. The parallel kinematic X–Y flexure mechanism provides good geometric decoupling. The kinematic and dynamic analysis shows that the proposed design has a large work space and high bandwidth, which is further verified by finite-element analysis. The analysis results demonstrate that the designed nanopositioner has a large workspace more than 200 µm and a high-natural frequency at about 760 Hz. Furthermore, the dynamical model of the nanopositioner, including the dynamics of the PZT actuators, is also generated from the perspective of input/output transfer functions, and the parameters are identified by frequency-response experiments, which can be used for nano precision servomechanism.