MetaTOC stay on top of your field, easily

Computer-aided alignment of castings and machining optimization

, ,

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Published online on

Abstract

The presented publication demonstrates an accuracy assessment method for machine tool body casting utilizing an optical scanner and reference model of the machine tool body. The process allows assessing the casting shape accuracy, as well as determining whether the size of the allowances of all work surfaces is sufficient for appropriate machining, corresponding to the construction design. The described method enables dispensing with the arduous manual operation of marking out as well as shortening the time of aligning and fixing the casting body for machining. For the experimental setup, four rotary indexing table castings were investigated according to the method principles. The geometric accuracy of each casting was examined by comparing their scans with the computer-aided design model, and the machining allowances were evaluated to determine casting qualification for machining. The nominal volume of material to be removed was established and subsequently optimized to reduce the volume to be machined. Thus, a rapid method of aligning a casting in a machine tool according to the planned optimized distribution of machining allowances was developed. For the set of measured castings, it was proven that their poor geometric quality precluded the possibility of further machining according to standard marking out instructions. However, by following the presented methodology, it was possible to successfully process the entire set while reducing the overall volume of the material removed by 4.5–9.6%, as compared with nominal values. The obtained results ultimately confirmed that manual marking out could be eliminated from the casting assessment process.