An LMI approach to non-fragile robust optimal guaranteed cost control of 2D discrete uncertain systems
Transactions of the Institute of Measurement and Control
Published online on January 24, 2014
Abstract
This paper addresses the problem of non-fragile robust optimal guaranteed cost control for a class of two-dimensional discrete systems described by the general model with norm-bounded uncertainties. Based on Lyapunov method, a new linear matrix inequality (LMI)-based criterion for the existence of non-fragile state feedback controller is established. Furthermore, a convex optimization problem with LMI constraints is formulated to select a non-fragile robust optimal guaranteed cost controller, which minimizes the upper bound of the closed-loop cost function. The merit of the proposed criterion in aspect of conservativeness over a recently reported criterion is demonstrated with the help of illustrative examples.