A novel ultrasonic ranging method used for single station indoor GPS
Transactions of the Institute of Measurement and Control
Published online on April 29, 2014
Abstract
Indoor GPS is one of the most popular positioning systems own to its high accuracy, real-time characteristics and multi-task management. In order to simplify the calibration process and extend its application, a single station model was presented recently. This paper proposes a novel ultrasonic ranging method used for the single station model. The traditional high-accuracy ultrasonic ranging method mainly uses a phase detection method by transmitting a multiple-frequency continuous wave. However, this method requires high accuracy of the phase detector and is still limited to small-scale application as a result of applying a continuous wave. Based on the constant time difference between the corresponding zero-cross points, this paper proposes a novel two-frequency pulse wave method, which can estimate the time of flight using the time differences between two received waves. Then a least squares estimation is used to eliminate random errors. Finally, an ultrasonic ranging experiment was conducted to validate its feasibility and stability.