Do Arbitrage‐Free Prices Come From Utility Maximization?
Published online on May 20, 2014
Abstract
In this paper we ask whether, given a stock market and an illiquid derivative, there exists arbitrage‐free prices at which a utility‐maximizing agent would always want to buy the derivative, irrespectively of his own initial endowment of derivatives and cash. We prove that this is false for any given investor if one considers all initial endowments with finite utility, and that it can instead be true if one restricts to the endowments in the interior. We show, however, how the endowments on the boundary can give rise to very odd phenomena; for example, an investor with such an endowment would choose not to trade in the derivative even at prices arbitrarily close to some arbitrage price.