MetaTOC stay on top of your field, easily

Weighted‐Average Least Squares Applied to Spatial Econometric Models: A Monte Carlo Investigation

, ,

Geographical Analysis

Published online on

Abstract

Recently, model averaging techniques have been employed widely in empirical investigations as an alternative to the conventional model selection procedure, a procedure criticized because it disregards a major component of uncertainty, namely, uncertainty regarding the model itself, and, thus, it leads to the underestimation of uncertainty regarding the quantities of interest. Bayesian model averaging (BMA) is one of the most popular model averaging techniques. Some studies indicate that BMA has cumbersome aspects. One of the major practical issues of using BMA is its substantial computational burden, which obstructs the process of obtaining exact estimates. A simulation method, such as Markov chain Monte Carlo (MCMC), is required to resolve this problem. Weighted‐average least squares (WALS) estimation has been proposed as an alternative to BMA. The computational burden of WALS estimation is negligible; therefore, it does not require the MCMC method. Furthermore, WALS estimation has theoretical advantages over BMA estimation. This article presents two contributions to the WALS literature. First, it applies WALS to spatial lag/error models in order to consider spatial dependence. Second, it extends WALS in order to consider explicitly the problem of multicollinearity by employing the technique of principal component regression. The small sample properties of the estimators of the proposed models are examined using Monte Carlo experiments; the results of these experiments suggest that the standard WALS may produce biased estimates when the underlying data‐generating process is a spatial lag process. Results also indicate that when the correlation among the regressors is high, the standard WALS estimators may suffer from large variances and root mean squared errors. Both of these problems are significantly mitigated by using the proposed models. Las técnicas de promediado de modelos (model averaging) vienen siendo empleadas con creciente frecuencia en las investigaciones empíricas como una alternativa a los procedimientos convencionales de selección de modelos estadísticos. Dichos procedimientos convencionales han sido criticados por no tomar en cuenta un componente clave de la incertidumbre: la incertidumbre del modelo en sí, y por lo tanto, conducen a la subestimación de la incertidumbre en la cuantificación de las valores estimados. El promediado bayesiano de modelos (Bayesian Model Averaging‐BMA) es una de las técnicas de promediado más usadas. Algunos estudios indican que BMA tiene aspectos engorrosos: uno de los principales aspectos prácticos a considerar en su uso es su pesada carga computacional, la cual obstruye el proceso de obtención de estimaciones exactas. Esta limitación hace necesario el uso de métodos de simulación, como el de la cadena de Markov de Monte Carlo (Markov Chain Monte Carlo‐MCMC). La estimación de mínimos cuadrados usando un promediado ponderado (Weighted‐Average Least Squares‐WALS) ha sido propuesta como alternativa a BMA. La carga computacional de la estimación WALS es mínima y por lo tanto no requiere del uso de MCMC. Más aun, la estimación WALS posee ventajas teóricas sobre BMA. Este artículo presenta dos contribuciones a la literatura especializada de WALS. En primer lugar, aplica WALS a modelos espaciales tipo lag/error con el fin de incorporar la dependencia espacial. En segundo lugar, modifica el método WALS, a fin de considerar explícitamente el problema de la multicolinealidad entre variables mediante el empleo de la técnica de regresión de componentes principales (Principal Component Regression‐PCR). Luego los autores utilizan experimentos Monte Carlo para examinar las propiedades de tipo “muestra pequeña” (small simple) de los estimadores de los modelos propuestos. Los resultados de los experimentos sugieren que el método WALS estándar puede producir estimaciones sesgadas cuando el proceso generador de datos subyacente (Data Generating Process‐DGP) es un proceso de retardo espacial (Spatial Lag Process‐SLP). Los resultados también indican que cuando la correlación entre las variables es alta, los estimadores estándar de WALS pueden padecer de varianzas y errores cuadráticos medios (root mean squared errors‐RMSEs) atípicamente grandes. Ambos problemas son mitigados significativamente mediante el uso de los modelos propuestos en el presente artículo. 近来,模型平均技术作为与传统模型选择流程可替换的方法,在经验调查中得到广泛应用。传统的模型选择流程忽视了模型本身的不确定性,进而低估了感兴趣样本数量的不确定性而受到批评。贝叶斯模型平均技术(BMA)是最为流行的模型平均技术之一。但已有研究表明,BMA在某些方面较为繁琐复杂,一个最主要的问题是其巨大的计算负荷阻碍模型了精确估计的过程,因此需要利用马尔可夫‐蒙特卡洛(MCMC) 之类的模拟方法进行解决。加权平均最小二乘(WALS)估计可作为BMA的可替换方法,其优点在于计算负荷可以忽略不计,因此不需要采用MCMC方法解决计算负荷问题。此外,WALS估计相比于BMA估计在理论上有一定的优势。本文针对WALS的贡献有两点:将WALS应用于空间滞后/空间误差模型以考虑空间依赖性,并利用主成分回归(PCR)拓展WALS以明确考虑多重共线性问题。本文利用蒙特卡洛实验对所提模型估计的小样本特征进行测试,结果显示当潜在数据生成过程(DGP)是一个空间滞后过程时,标准WALS可能产生有偏估计;此外,当回归量的相关性较高时,标准WALS估计量可能有较大的方差和根均方差(RMSEs).而本文提出的加权平均最小二乘估计模型能很好地缓解这两个问题。