MetaTOC stay on top of your field, easily

The Cav1.2 N terminus contains a CaM kinase site that modulates channel trafficking and function

, , ,

Pflügers Archiv

Published online on

Abstract

The L-type voltage-gated calcium channel Cav1.2 and the calcium-activated CaM kinase cascade both regulate excitation transcription coupling in the brain. CaM kinase is known to associate with the C terminus of Cav1.2 in a region called the PreIQ-IQ domain, which also binds multiple calmodulin molecules. Here we identify and characterize a second CaMKII binding site in the N terminus of Cav1.2 that is formed by a stretch of four amino residues (cysteine–isoleucine–serine–isoleucine) and which regulates channel expression and function. By using live cell imaging of tsA-201 cells we show that GFP fusion constructs of the CaMKII binding region, termed N2B-II co-localize with mCherry-CaMKII. Mutating CISI to AAAA ablates binding to and colocalization with CaMKII. Cav1.2-AAAA channels show reduced cell surface expression in tsA-201 cells, but interestingly, display an increase in channel function that offsets the trafficking deficit. Altogether our data reveal that the proximal N terminus of Cav1.2 contains a CaMKII binding region which contributes to channel surface expression and function.